27:50 8/080/61/034/009/016/016 0204/0305

The synthesis of some diamino-ethers... D204/D305

A mixture of potassium phthalimide and "chlorex" was reflected for 5-6 hours at 160-180° to obtain a viscous, brown mass which self-dified on cooling. The water-soluble constituents were removed by boiling, and the residue consisting essentially of β,β'-diphthali-mido-ethyl ether was extracted with alcohol, from which a fine grey powder was deposited. This was recrystallized from alcohol and then converted the chlorhydrate of β,β'-diaminodiatoyl ether (Compound I) by allowing it to stand in contact with potassium hydroxide solution for 2-3 days, the solution being heated to dry-ness and finally neutralized with HCl. 4,4'-diaminodiphenyl ether (Compound II) was prepared by the traditional method of reducing the dinitrodiphenyl compound with tin and hydrochloric acid. The chlethydrate of this compound had m.p. 185-186°. Polyterephthali-mides were obtained by the interphase polycondensation method. The hydrochloride of compound I was used, and compound II being act weaker base was subjected to polycondensation with the chloranhydride of terephthalic acid. Tables are given of relationships of viscosity and yield of polyphthalimide based on compound I to

Card 2/3

27350

S/080/61/034/009/016/016

The synthesis of some diamino-ethers... D204/D305

quantity of alkali in the aqueous phase; and cased on compound II to pH value of the medium. Thermomechanical tests showed that the polyamide based on compound I softens in the temperature range 200-230° and begins to melt above 260°; the polyamide based on compound II has a m.p. above 340°. Compounds with the simple eather bond as described are compared with those containing the methylene group. There are 2 tables, I figure, and becomes, 3 Sometholog and 3 non-Soviet-bloo. The reference of the English-language publication reads as follows: V.S. Shashot and V.M. Eareckson, J. Polymer Sci., XL, 343, 1959.

ASSOCIATION: Nauchno-issledovatel'skiy institut sintelleheskikn

smol. g. Vladimir (Scientific Research lastitute of

Synthetic Resins g. Vladimir;

SUBMITTED: November 4, 1960

4

Card 3/3

S/191/62/000/005/009/012 B110/B101

AUTHOR:

Sokolov, L. B.

TITLE:

Synthesis of polyoxamides in the gas phase

PERIODICAL:

Plasticheskiye massy, no. 5, 1962, 45-47

TEXT: Instead of using liquid-liquid interface polycondensation for the production of polyamides, gas phase polycondensation of diamine with oxalyl chloride at the liquid-gas interface was proposed. This offers the following advantages: (1) application of oxalyl chloride in the gas phase reduces hydrolysis and thus increases yield and molecular weight; (2) yield and molecular weight are independent of the thickness of the aqueous layer and they increase with increasing temperature: [m] = 0.85 (95°C) yield = 2% (95°C) for polyhexamethylene oxamide. The yield may be increased up to 60%, the characteristic viscosity, up to 1.0; (3) polycondensation proceeds much faster under atmospheric pressure and at much lower temperatures than when the other methods are used; (4) it saves the use of an organic phase; (5) it permits the production of relatively low-melting polyoxamides on the basis of aliphatic diamines, and high-melting Card 1/2

Synthesis of polyoxamides in ...

S/191/62/000/005/009/012 B110/B101

polyoxamides on the basis of aromatic diamines; (6) it allows of practical application and may easily be made continuous. The molecular weight depends on the reaction temperature, component concentration, the pH of the aqueous phase etc. There are 2 figures and 2 tables.

Card 2/2

SQKOLOV, L.B.; TURETSKIY, L.V.; TUGOVA, L.I.

Liquid - gas interfacial polycondensation. Part 2: Laws

governing the gas phase synthesis of aromatic polyoxamides. Vysokom. soed. 4 no.12:1817-1821 D '62. (MIRA 15:12)

1. Vladimirskiy nauchno-issledovatel'skiy institut sinteticheskikh smol.

(Oxamide) (Polymerization)
(Phase rule and equilibrium)

SAVINOV, V.M.; SOKOLOV, L.B.

Synthesis of high-molecular weight polyesters of oxalic acid.
Plast. massy no.11:65-67 '63. (MIRA 16:12)

THE PROPERTY OF THE PROPERTY O

s/0000/63/000/000/0064/0067

ACCESSION NR: AT4033986

AUTHOR: Astakhova, A. S.; Sokolov, L. B.

TITLE: Polycondensation on the liquid - gas boundary. V. On the gas-phase synthesis of polythiooxalates

SOURCE: Geterotsepny*ye vy*dokomolekulyarny*ye soyedineniya (Heterochain macromolecular compounds); sbornik statey. Moscow, Izd-vo "Nauka," 1963, 64-67

TOPIC TAGS: polymerization, polycondensation, boundary polymerization, liquid gas boundary, polythiooxalate, gaseous polymerization

ABSTRACT: In a procedure similar to that used by the authors for the synthesis of polyoxamides, a mixture of 12-15 vol. % gaseous oxalylchloride with nitrogen was passed through an aqueous solution of sodium dimercaptide. The resulting vapors and gases were passed through a concentrated KMnO4-solution, and the polymer formed was separated by filtration, washed with hot water and dried to constant weight at 60-70C. The two polymers obtained, polytetramethylenethiooxalate and polypentamethylenethiooxalate, are yellowish powders with melting points at 186-187 and 145C, respectively. The former swells readily in m-cresol but is insoluble in any common solvent while the latter dissolves Card 1/2

CIA-RDP86-00513R001652010016-9 "APPROVED FOR RELEASE: 08/25/2000

5/190/03/c24/bg2/c3/c24 B101/B102

1 elloffula

Bokolov, L. B., Astakhova, A. S.

TITLE:

Polycondensation at the liquid - gas interface. III. Synthesis of polyoxamides in organic midja in the

gas phase

PERIODICAL:

Vysokomolekulyarnyye soyedineniya, v. 5, no. 2, 1963,

176-182

TEXT: The synthesis of polyoxamides by bubbling gaseous oxalyl chloride through the aqueous solution of a diamine was described in Vysokomolek. soyed. 3, 1369, 1961. A disadvantage of that method was the solubility of oxalyl chloride in water, which led to its hydrolysis and to a reduced yield and molecular weight of the polymer. Now nitrogen containing 15% by volume exalyl chloride was bubbled through 0.1 M organic solution of hexamethylene diamine at 110°C or at a temperature 3-5°C below the boiling point of the solvent. Results (solvent, yield (in %), reduced viscosity): water, 24, 1.08; dimethyl formamide, 3, 0.40; n-octans, 52, 0.31; p-xylene, 34, 0.24; nitro-benzene, 46, 0.22; chloro benzene, 60, 0.20; dibuthyl card 1/3

Polycondensation at the liquid - ..

S/190/63/005/002/003/024 B101/B102

ether, 34, 0.20; dioxane, 36, 0.16; n-butanol, 11, 0.08; ethanol, 6, 0.08; pyridine, 0, 0. No connection was found between the surface tension and dipole moment of the solvent on the one hand and the yield of polyamide on the other. Suitable solvents were n-octane p-xylene, nitro- and chloro benzene. In pyridine, a complex of oxalyl chloride forms which prevents polymerization. Results of tests with p-xylene and nitro-benzene: yield and molecular weight increased with increasing temperature. The yield increased with increasing concentration of the diamine, reached a maximum with 0.2 mole/1, then decreased slightly and remained constant at > 0.35 mole/1. An increase in the concentration of oxalyl chloride in the gas phase was accompanied by a reduction in yield and molecular weight. As compared with water, no higher molecular weights were obtained. This is due to the solubility of the oxalyl chloride in the solvents, to precipitation of the diamine hydrochloride forming and to termination caused by the reaction of the HCl forming with the amino end group, which can be prevented in water by dissolution of the HCl or by reaction with an alkaline acceptor. There are 3 figures and 2 tables.

ASSOCIATION:

Vladimirskiy nauchno-issledovatel skiy institut sinteticheskikh smol (Vladimir Scientific Research Insti-

0ard 2/3

tute of Synthetic Resins)

STATE OF THE PERSON OF THE PER

PETROV, A.A.; PORFIR YEVA, Yu.I.; SOKOLOV, L.B.

Course of the reactions in which electrophilic and nucleophilic reagents are added to asymmetrical homologs of diacetylene. Dokl. AN SSSR 151 no.6:1343-1346 Ag '63. (MIRA 16:10)

1. Leningradskiy tekhnologicheskiy institut im. Lensoveta. Predstavleno akademikom B.A.Arbuzovym.

SOKOLOV, I.B.; TURETSKIY, L.V.

Liquid - gas interfacial polycondensation. Part 7. Vysokom.soed. 6 no. 2:346-351 F '64. (MIRA 17:2)

1. Nauchno-issledovatel'skiy institut sinteticheskikh smol, Vladimir.

SOKOLOV, L.B.; KUDIM, T.V.

Polycondensation in emulsions. Dokl. AN SSSR 158 no.5:1139-1142 0 '64. (MIRA 17:10)

1. Nauchno-issledovatel'skiy institut sinteticheskikh smol, Vladimir. Predstavleno akademikom S.S.Medvedevym.

KRASNOV, Ye.P.; SOKOLOV, L.B.; POLYAKOVA, T.A.

Thermal degradation of polyamides. Part 2: Effect of impurities on the thermal degradation of polyoxamides. Vysokom. soed. 6 no.7:1244-1250 Jl '64 (MIRA 18:2)

l. Nauchno-issledovatel'skiy institut sinteticheskikh smol,
Vladimir.

ACCESSION NR: AP4042187

S/0190/64/006/007/1261/1266

AUTHOR: Kuznetsov, G. A., Gerasimov, V. D., Sokolov, L. B.

TITLE: Investigation of the pressure sintering of powdered polymers. I. Ultrasonic evaluation of the change in contact between the particles of polymer powders

SOURCE: Vy*sokomolekulyarny*ye soyedineniya, v. 6, no. 7, 1964, 1261-1266

TOPIC TAGS: polymer, powdered polymer, ultrasound, sintering, polymer particle contact, polymer structure, amorphous polymer, crystalline polymer

ABSTRACT: The measurement of the absorption and velocity of ultrasound passing through samples of polymer powder subjected to different degrees of pressure clarifies many problems concerning the mechanism of coalescence of materials, their imperfections (such as pores, voids, density variations) and the kinetics of their changes (in size and amount of imperfection during sintering). Kapron, polyhexamethylene oxamide, polyhexamethylene terephthalamide, polyvinyl chloride and polystyrene samples (5-7 mm thick, 30 mm in diameter for amorphous and 10 mm in diameter for crystalline polymers) were investigated. During the sintering of amorphous polymers under pressure, complete contact between the particles of polymer

Card 1/3

ACCESSION NR: AP4042187

powder is attained over the softe...ng temperature range. For crystalline polymers, no complete contact is obtained before melting. Their sintering below the melting point is due to the softening of the amorphous part. The annealing of crystalline powdered polymers renders sintering difficult. The curves plotted for the absorption and velocity of ultrasound for amorphous polystyrene and polyvinyl chloride samples against molding temperature at different frequencies show a sharp break. By increasing the frequency of the ultrasound, the beginning of the break is shifted toward higher temperatures and the sharpness of the break is increased. The variation in the steepness of the curves is explained by the correlation between the size of imperfections and the ultrasonic wavelength, assuming that there is a scattering of ultrasound on these imperfections due to powder particles or air inclusions. The velocity of ultrasound was near 2300 m/sec, at a frequency of 1 Mc/sec. for both polyvinyl chloride and polystyrene. This gives $\lambda = 2.3$ mm, and at 10 Mc/sec. $\lambda = 0.23$ mm. For crystalline polymer such as kapron, no plateau was found in the ultrasonic velocity-molding temperature plots, but after the inflection of the curve a monotonous rise was observed which becomes more pronounced in the melting temperature range. The curves and experimental data for amorphous and crystalline polymers are compared and discussed in detail. Orig. art. has: 4 figures, 1 table and 2 formulas.

Card 1_

garan a salah <u>a salah dan salah da</u> kacam	VALUE TO THE PROPERTY OF THE P	17	,			
ACCESSION NR:	AP4042187	 		. 371	edimir (S	rientifi(
ACCESSION NR: AP4042181 ASSOCIATION: Nauchno-issledovatel'skiy is Research Institute for Synthetic Resins)		institut sinte	ticheskikh	smol, VI	ENCL: 0	
SUBMITTED: 02	2Aug63				OTHER:	•
SUB CODE: OC.	, MT	REF SOV: 0				•
•			fo gamen		•	
Bear			•	:		•
3/3		·		المراجعة المتعارض ا		
,Card_					<u> </u>	

SAVINOV, V.M.; SOKOLOV, L.B.; PEDOROV, A.A.

Effect of the acidity of diols on the hydrolytic stability of oxalic acid polyesters. Vysokom. soed. 6 no.7:1335-1339 Jl *64 (MIRA 18:2)

1. Vladimirskiy nauchno-issledovatel'skiy institut sinteticheskikh smol.

Regularities in the addition reactions of diacetylenes. Part 1:
Course of the addition of bromine and hydrogen bromide to the

nearest unsummetrical diacetylene homologs. Zhur. ob. Khim.
34 no.6:187-1881 Je '64. (MIRA 17:7)
1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta.

PORFIR'YEVA, Yu. I.; SOKOLOV, L. B.; PETROV, A. A.

Regularities in the addition reactions of diacetylenes. Part 2: Course of the addition of mercaptans o to nearest unsymmetrical diacetylene homologs. Zhur, ob. Khim. 34 no.6:1881-1886 Je 164. (MIRA 17:7)

1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta.

L 19743-65 EPA(s)-2/EWT(m)/EPF(c)/EPR/EWP(j)/T Pc-4/Pr-4/Ps-4/Pt-10 WW/HM/MLK

ACCESSION NR: AT4049868 S/0000/64/000/000/0275/0281

AUTHOR: Krasnov, Ye. P., Sokolov, L. B.

B+1

RPL

TITLE: Thermal decomposition of polyamides. I. Kinetic laws of the thermal decomposition of polyamides of different chemical structures.

SOURCE: Khimicheskiye svoystva i modifikatsiya polimerov (Chemical properties and the modification of polymers); sbornik statey. Moscow, Izd-vo Nauka, 275-281

TOPIC TAGS: polyamide, polyamide thermal stability, polyamide structure, polymer degradation kinetics, aromatic polyamide, polyamide viscosity

ABSTRACT: An experimental study of the thermal decomposition of various polyamides showed that the degassed specimens all decomposed between 300 and 360C, but that the start of decomposition within this interval and the rates and activation energies depended significantly on the chemical composition of the polymer and on the method of condensation. The study covered polydecamethyleneoxamide, polyhexamethyleneoxamide, polyhexamethyleneoxamide, polyhexamethyleneterephthalamide, poly-p- and poly-m-phenyleneoxamide, and poly-(4, 4'-diamino-diphenyl)oxamide, produced by gas-, melt-, or mixed-phase polycondensation. Introduction of aromatic groups, either as aromatic acids or as aromatic amines, increased the thermal stability, and stability increased according to the diamines in the order hexa-

Card 1/2

L 19743-65

ACCESSION NR: AT4049868

methylenediamine < decamethylenediamine < m-phenylenediamine < p-phenylenediamine < 4,4'-diaminodiphenyl. The apparent activation energies were shown in most cases to be significantly different at lower and at higher temperatures, where different types of reactions occur. The effect of the phase of condensation was shown particularly clearly by the viscosity of thermally treated specimens. The viscosity of aliphatic compounds increased, and that of aromatic compounds decreased with an increase in temperature if the polymer had been prepared by gas phase or mixed phase condensation, and the effect was detectable at low temperatures and before the start of decomposition. A similar increase in the viscosity of aliphatic polyamides produced in the melt phase occurred at higher temperatures only. Effects of solid-phase condensation in thermally treated polyamides are discussed. "The authors thank L. V. Turetskiy and V. M. Savinov for providing the samples of polyamide used in this study." Orig. art.has: 2 tables and 8 graphs.

ASSCCIATION: Vladimirsky nauchno-issledovatel skiy institut sinteticheskikh smol Vladimir Scientific Research Institute for Synthetic Resins)

SUBMITTED: 25Jul63

ENCL: 00

SUB CODE: OC

NO FEF SOV: 009

OTHER: 004

Card 2/2

L 21212-65 EWT(m)/EPF(c)/EPR/EWP(j)/T Pc-4/Pr-4/Ps-4 RPL WW/JW/RM ACCESSION NR: AP5001475 S/0190/64/006/012/2117/2121

AUTHOR: Sokolov, L. B.

TITLE: Polycondensation at the gas-liquid interface. VIII. The selection of reaction systems for vapor phase polycondensation

SOURCE: Vysokomolekulyarnyye soyedineniya, v. 6, no. 12, 1964, 2117-2121

TOPIC TAGS: polycondensation, vapor phase polycondensation, polyamide synthesis, polythioamide synthesis, polythioaster synthesis, fluorinated polyamide

ABSTRACT: Polycondensation at the gas-liquid interface has been studied with selected reaction systems to investigate the applicability of the method and the increase in molecular weight and yield with temperature which had been established by L. B. Sokolov et al. (Vysokomolekulyarnyye soyedineniya v. 3, 1369, 1961). The experimental technique described in the earlier work was used, and aliphatic or aromatic polyamides, polythioamides, polythioesters, or fluorinated polyamides were prepared by reacting hexamethylenediamine, decamethylenediamine, p- or m-phenylenediamine, benzidine, p-xylylenediamine, pentamethylenedithiol, or ethylenediamine with oxalyl chloride or fluoride, phosgene, carbon suboxide, thio-phosgene, or perfluoroadipyl dichloride. The method was shown not to be usable for reacting ethylenediamine, piperazine or diphenols with oxalyl chloride, hexa-Cord 1/2

L 21212-65 ACCESSION NR: AP5001475

methylenediamine with higher two-basic carboxylyl dichloride, or p-phenylenediamine or diphenols with phosgene. A mathematical model for the thermodynamic feasibility of the method is presented, accounting for the heat of solution. The reaction is favored by the excess of activation energy of hydrolysis of gas-phase monomer over the activation energy of polymerization. General requirements for the reaction systems are: high reaction rates of polycondensation, relatively high vapor pressures of vapor phase monomers at the reaction temperature, and low solubility of this monomer in the aqueous phase. Orig. art. has: 2 tables and 7 formulas.

ASSCCIATION: Vladimirskiy nauchno-issledovatel'skiy institut sinteticheskikh smol (Vladimir Scientific Research Institute for Synthetic Resins)

SUEMITTED: 13Jan64

ENCL: 00

SUB CODE: OC

NO REF SOV: 004

OTHER: 002

Card 2/2

SAVENOV, V.M., SOKOLOV, L.B.

Obtaining the reaction sirups of aromatic polyamides suitable for the formation of fibers. Khim, volok, no.4322-25 '65. (MIRA 1838)

1. Vladimirskiy nauchno-issledovatel'skiy institut sinteticheskikh smol.

EWT(m)/EPF(c)/EPR/EWP(j)/T Pc-4/Pr-4/Ps-4 5/0286/65/000/006/0061/0061 ACCESSION NR: AP5008548 AUTHOR: Sokolov, L. B.; Astakhova, A. S.; Ryzhova, L. A. وشكا TITLE: A method for producing polyamides which contain fluorine. Class 39, No. 169248 SOURCE: Byulleten' izobreteniy i tovarnykh znakov, no. 6, 1965, 61 TOPIC TAGS: polyamide plastic, fluorine ABSTRACT: This Author's Certificate introduces a method for producing polyamides which contain fluorine. The technological process is simplified by passing gaseous perfluoro-carboxyl chloride through an aqueous solution of an aliphatic or aromatic diamine at a temperature of 90-100°C. ASSOCIATION: none SUB CODE: MT, GC ENCL: 00 SUBMITTED: 17Apr61 OTHER: 000 NO REF SOV: 000

L 41584-65 EWT(m)/EPF(c)/EPR/EWP(j)/EWA(c) Pc-4/Pr-4/Ps-4 RPL WW/JW/EM ACCESSION NR: AP5008720 S/0366/65/001/003/0610/0611
AUTHORS: Sokolov, L. B.; Porfir'yeva, Yu. I.; Petrov, A. A.

TITLE: Direction of addition of diazomethane to diacetylene homolog

SOURCE: Zhurnal organicheskoy khimii, v. 1, no. 3, 1965, 610-611

TOPIC TAGS: methane, acetylene, alcohol, carbonic acid

ABSTRACT: It is shown that the homolog of diacetylene attaches to diazomethane in a reaction in which acetylene and groupings take a primary part. From methyldiacetylene and diazomethane in alcohol, 5-propynylpyrazole was obtained with a boiling temperature of 112-114C and a melting point at 71-72C. Ethyldiacetylene and diazomethane produced 5-butynylpyrazole with a boiling point at 120-122C and a melting point at 38-39C. By oxidizing both alkynylpyrazoles, 5-pyrazolecarbonic acid is obtained with a 212 to 213.5C melting point.

ASSOCIATION: Leningradskiy tekhnologicheskiy institut imeni Lensoveta (Leningrad Technological Institute)

SUBMITTED: 20Nov64

ENCL: 00

SUB CODE: OC

NO REF SOV: OOO

OTHER: 003

Card 1/1 /ruc

CIA-RDP86-00513R001652010016-9 'APPROVED FOR RELEASE: 08/25/2000

EPF(c)/EWP(j)/EWA(c)/EWT(m)/T Pc-4/Pr-4 L 45408-65

ACCESSION NR: AP5011245

UR/0190/65/007/004/0501/0605

AUTHOR: Sokolov, L. B.

TITLE: Basic principles of emulsion polycondensation

SOURCE: Vysokomolekulyarnyye soyedineniya, v. 7, no. 4, 1965, 601-605

TOPIC TAGS: emulsion polymerization, diamine, polyamide, interphase zone

ABSTRACT: The author states that this paper is the first of a series devoted to the study of the rules governing emulsion polycondensation, in which he discusses the experimentally established basis for the emulsion polycondensation process as observed in the reaction of polyamidation of diamines and dichloroannydrides. In the polycondensation of diamines and dichloroanhydrides of carboxylic acids, the essential and necessary conditions must be a large proportion of diamine in the two-phase system (i.e., the ratio of diamine to H20.

must be much greater than one), and the HCl acceptor must be mostly in the aqueous phase (i.e., the ratio of the acceptor to water must be much less than one). The optimal conditions for the process are thus obtained when the first ratio approaches infinity, the second approaches zero. It is concluded that emulsion polycondensation takes place in the kinetic zone, in contrast to

L 45408-65

ACCESSION NR: AP5011245

interphase condensation, which occurs in the diffusion zone. This indicates that emulsion polycondensation must be similar to that in melts and solution. An analysis of different polycondensation reactions from the point of view of localized reaction zones establishes a series: gas-phase -> interphase -> emulsion -> solution. This represents an expansion of the reaction zone from a narrow layer to the entire volume. "Experimental data used in this work were obtained by T. V. Kudiy and T. L. Zhanina, to whom the author expresses his sincere thanks." Orig. art. has: 2 figures and 2 tables.

ASSOCIATION: Vladimirskiy nauchno-issledovatel'skiy institut sinteticheskikh smol (Vladimir Scientific Research Institute of Synthetic Resins)

SUBMITTED: 18May64

ENCL: 00

SUB CODE: OC, GC

NO REF SOV: 006

OTHER: 003

Card 2/27mB

在一个人,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的一个人,我们就是我们的,我们就是我们的,我们就会是不是一个人,不是我们的,我们就是我们的

SOKOLOV, L.B.; KUDIM, T.V.

Effect and role of HCl acceptors in emulsion polyamidation in the presence of aromatic reagents. Vysokom. soed. 7 no.4:634-637 Ap '65. (MIRA 18:6)

1. Nauchno-issledovatel'skiy institut sinteticheskikh smol, Vladimir, prigorod Moskvy.

L 57057-65 EPF(c)/EWP(j)/EWT(m)/T Pc-4/Pr-4 RM ACCESSION NR: AP5013051

UR/0190/65/007/005/0772/0777 678.675

AUTHORS: Savinov, V. M.; Sokolov, L. B.

TITLE: Some specific features in the synthesis of aromatic polyamides in amic solvents

SOURCE: Vysokomolekulyarnyye soyedineniya, v. 7, no. 5, 1965, 772-777

TOPIC TAGS: organic synthesis, aromatic polyamide, polymerization

ABSTRACT: The acylation of amines with acyl chlorides in dimethylformamide and dimethylacetamide was studied as part of an investigation on possible use of these solvents for synthesizing polyamides. The use of mixed solvents in the synthesis was also studied. Preliminary solution of the chlorides in dimethylacetamide and substitution of dimethylformamide for dimethylacedamide (because it is more accessible and cheaper) caused a sharp decrease in molecular weight of the polymen product. In the first case, the cause was found to be impurities: dimethylamine and water. Removal of the impurities solves this problem. For dimethylacetamide it was found that side reactions are more aggressive than the main polymerization reaction, and for this reason this solvent must be considered

Card 1/2

L 57057-65

ACCESSION NR: AP5013051

unsuitable for producing molecules of high molecular weight. Partial substitution of chlorides of the diamines for the diamines proved to be possible without reduction of the molecular weight of the polymeric product. Complete replacement is not possible because of the limited solubility of the salts. This solubility may be improved, however, by using a solution containing the diamine in the solvent. In this way, up to 50% replacement was effected without reducing the weight of the resulting polymer. Increase in solubility of the salt is due to exchange of HCl between the salt and the diamine. Orig. art. has: 3 figures and 2 tables.

ASSOCIATION: Nauchno-issledovatel'skiy institut sinteticheskikh smol, Vladimir (Scientific Research Institute of Synthetic Resins)

SUBMITTED: 12Jun64

ENCL: 00

SUB CODE: OC, GC

NO REF SOV: 003

OTHER: 008

[1] Card 2/2

•
(1) (FICINI) WW/RM
L 2928-66 ENT(m)/EFF(c)/EMP(1)/T/EMA(c)/ETC(m) WW/RM UR/0190/65/007/009/1592/1596 ACCESSION NR: AP5022606 678.01:53+678.675
ACCESSION NR: AP5022606 , 678.01:53+678.675
,4
We Fomenko, L. N. Maklakov, A. L.
AUTHORS: Kuznetsov, G. A.; Gerasimov, V. D.; Fomenko, L. N.; Maklakov, A. I.; Pimenov, G. G.; / Sokolov, L. B.
Pimenov, G. G.; Sokolov, L. B.
AUTHORS: Kuznetsov, G. A.; Ogiasisty Pimenov, G. G.; Sokolov, L. B. TITLE: The nature of the transitions in polymetaphenyleneisophthalamide 7. 1965, 1592-1596
envedingniva. V. 7, no. 9, 1965, 1592-1590
SOURCE: Vysokomolekulyarnyye soyedineniya, v. 7, no. 9, 1965, 1592-1596
SOURCE: Vysokomolekniyaliyyo bayana solomolekniyaliyyo bayana solomolekniyaliyyo bayana bayana solomolekniyaliyyo bayana bayana solomolekniyaliyyo bayana bayana solomolekniyaliyyo bayana solomolekniyaliyo bayana solomolekniya solomolekniya solomolekniya solomolekniya solomole
TOPIC TAGS: polymer, result, phenylone
resonance, thermal soulder and a resolution and a resolut
ABSTRACT: The nature of the transitions of polymetaphenylenelsophical, x-ray, (phenylone) was investigated by thermomechanical, differential thermal, x-ray, (phenylone) was investigated by thermomechanical, differential thermal, x-ray, (phenylone) was investigated by thermomechanical, differential thermal, x-ray, (phenylone) was investigated by the manufacture of the transitions of polymetaphenylenelsophical x-ray, (phenylone) was investigated by thermomechanical, differential thermal, x-ray, (phenylone) was investigated by the properties of the transition of t
ABSTRACT: The nature of the the momentum of the momentum of the last (phenylone) was investigated by thermomentum of the desired to determine the best and nuclear magnetic resonance methods. It was desired to determine the best and nuclear magnetic resonance methods. It was desired to determine the best and nuclear magnetic producting polymers of high thermal stability with the than 1.0 in
(phenylone) was investigated and muclear magnetic resonance methods. It was desired to detail the magnetic resonance methods. It was desired to detail the magnetic resonance methods. It was desired to detail the improved film conditions for producing polymers of high thermal stability with improved film conditions. A powdery specimen with a viscosity higher than 1.0 in
and michel for producing polymers of high thermal statistics higher than 1.0 in
and nuclear magnetic resonance of high thermal stability with improvement conditions for producing polymers of high thermal stability with improvement 1.0 in and fiber properties. A powdery specimen with a viscosity higher than 1.0 in and fiber properties. A powdery specimen with a viscosity higher than 1.0 in the experimental conditions and fiber properties. A powdery specimen was used. The experimental conditions
are described. It was found that the initially amorphous phenylend are described. It was found that the initially amorphous phenylend of 0.8, 6, and upon heating. The thermomechanical curves plotted at a load of 0.8, 6, and upon heating. The thermomechanical curves plotted at a load of 0.8, 6, and upon heating. The the glass temperature of phenylene is 280C. The x-ray
upon heating. The thermomechanical curves plotted at a lost of the x-ray 1000 kg/cm ² show that the glass temperature of phenylone is 280C. The x-ray
Card 1/2
[LGra_A/ 6

"APPROVED FOR RELEASE: 08/25/2000 CIA-I

HEREN HEREN HEREN HEREN BOOK BOOK DE STOLEN DE

CIA-RDP86-00513R001652010016-9

L 2928-66 ACCESSION NR: AP5022606 diagrams of amorphous and crystalline phenylone were taken at 26, 100, 286, 356, and 433C. The thermomechanical curve is interpreted on the basis of the data of differential thermal analysis and of x-ray study. After softening at 3000, the polymer starts to crystallize. The range of steady deformation lying at 340-400C polymer starts to crystallize the range of steady deformation lying at 340-400C corresponds to the crystalline state of phenylone. Heating above 400C causes decomposition, while melting sets in at 430C. The second moment of the absorption line of nuclear magnetic resonance is plotted against temperature for the initial amorphous polymor and for a specimen preheated to 3600. The character of the curves is discussed. It was found that the increase in Δ H₂² of the preheated specimen over all temperature ranges produces a smaller mobility and better packing of the molecules, indicative of the crystallization process. The disappearance of the highly elastic state below the melting point of the crystal-line substance explains the absence of the minimum on the ΔH_2^2 --temperature curve in the range of 290-320C. Orig. art. has: 5 figures. ASSOCIATION: Vladimirskiy nauchno-issledovatel skiy institut sinteticheskikh smol ASSOCIATION: Viscountific Research Institute of Synthetic Resignal Kasanskiy gosudarstvannyy universitet (laten State university) SUB CODE: OC, OC . EMCL: 00 SUBMITTED: 190ct64 OTHER: 001 NO REF SOV

SOKOLOV, L.B.; KUDIM, T.V.

Effect of the ratio and composition of phases in the emulsion polycondensation of aromatic diamines and acyl dichlorides.

Vysokom. soed. 7 no.11:1899-1904 N '65. (MIRA 19:1)

1. Vladimirskiy nauchno-issledovatel'skiy insitut sinteticheskikh smol. Submitted December 7, 1964.

Relation between heterophase copolycondensation constants and

the adsorption characteristics of monomers. Vysokom. soed. 7 no.11:1997-2000 N 165. (MIRA 19:1)

1. Vladimirskiy nauchno-issledovatel'skiy institut sinteticheskikh smol. Submitted January 5, 1965.

SOURCE CODE: UR/0190/66/008/003/0380/0386 EWT(m)/EWP(j)/T ACC NRI AP6010104 AUTHORS: Krasnov, Ye. P.; Savinov, V. M.; Sokolov, L. B.; Loginova, V. I.; Belyakov, V. K.; Polyakova, T. A. ORG: Vladimir Scientific Research Institute of Synthetic Resins (Vladimirskiy nauchno-issledovatel'skiy institut sinteticheskikh smol) TITLE: Thermal degradation of isomeric aromatic polyamides SOURCE: Vysokomolekulyarnyye soyednieniya, v. 8, no. 3, 1966, 380-386 TOPIC TAGS: polyamide, terephthalic acid, pyrolysis, discarbolic acid, isomer, thermal stability, thermal effect, mass spectrometry, chromatographic analysis, heat resistance ABSTRACT: A thermal decomposition in vacuo of four isomeric aromatic polyamides based on phenylenediamines and terephthalic acids has been investigated. The composition of the gaseous and liquid products of the polyamides pyrolysis was analyzed by means of mass spectrometry and gas liquid chromatography. It was shown that the heat resistance of polyamides greatly depends on the isomeric form of the starting phenylenediamines and dicarboxylic acids. The polyamide chain is the most stable with para-isomers and the least stable with metha-isomers. Card 1/2

tabi	'S 18,	the	caus	les w	ere s	ugges	the ted the	results o	f the paifferent	rolysis therms	produ	uct
roma	tic	polv	amide bstra	8.	des a Orig.	and for	t the	thermal	decompos s and 2	ition o	f ison (Bat (NT)	meric sed
JB C	ODE:	07,	11/		SUBM OTH	DATE:	01Fe	b65/	ORIG	REF: 0	•	•
									••	••		
						•			••			
		•			. :				•	•	· .	
	•		•						* * · · ·	•		
											• .	
			•									
						* .				• *		
							-					
	/2 \ <u>)</u>	2										

EWT(m)/EWP(j)/T-IJP(c)-RM/JW ACC NR: AP6008969 SOURCE CODE: UR/0190/65/007/011/1899/1904 AUTHORS: Sokolov, L. B.; Kudim, T. V. ORG: Madimir Scientific Research Institute of Synthetic Resins (Vladimirskiy nauchno-issledovatel'skiy institut sinteticheskikh smol) TITLE: Effect of the phase ratio and composition on the emulsion polycondensation of aromatic diamines and acyl dichlorides SOURCE: Vysokomolekulyarnyye soyedineniya, v. 7, no. 11, 1965, 1899-1904 TOPIC TAGS: copolymer, emulsion polymerization, amine, aromatic compound ABSTRACT: It was the object of this investigation to determine the effect of phase composition on the emulsion polycondensation of m-phenylenediamine and isophthalyl chloride in the system tetrahydrofurane-water-sodium carbonate. The experimental procedure followed that of L. B. Sokolov and T. V. Kudim (Vysokomolek. soyed., 7, 634, 1965). The molecular weight, solubility in dimethylformamide and dimethylacetamide, and viscosity of the polymer were determined as functions of the phase composition and of the emulsifying medium composition. The experimental results are presented in graphs and tables (see Fig. 1). It is concluded that water catalyzes the main reaction by increasing the polarity of the medium, and it is suggested that a low value of the surface tension is a characteristic property of 2 Card 1/2 UDC: 541.64+678.675

L 27326-66 EWT(m)/EWP(j)/I IJP(c) WW/RM	
ACC NR: AP6008986 (A) SOURCE CODE: UR/0190/65/007/011/1997/2000]
AUTHORS: Sokolov, L. B.; Turetskiy, L. V.	
ORG: Vladimir Scientific Research Institute of Synthetic Resins (Vladimirskiy nauchno -issledovatel'skiy institut sinteticheskihk smol)	
TITLE: Relation between heterophase copolycondensation and monomer absorption characteristics	
SOURCE: Vysokomolekulyarnyye soyedineniya, v. 7, no. 11, 1965, 1997-2000	
TOPIC TAGS: polycondensation, copolymer, absorption, polymerization absorption, monomer	
ABSTRACT: This investigation was conducted to extend an earlier published work of L. V. Turetskiy, L. B. Sokolov, and V. Z. Nikonov (Sb. Geterotsepnyye vysokomolekulyarnyye soyedineniya, izd. Nauka, 1964, str. 107). It was desired to determine the role of adsorption processes in a heterogeneous copolycondensation (gasliquid) reaction. The relationship	
$\frac{\ln 17r = \Delta n \cdot \ln \beta}{\text{was tested on a number of results obtained earlier, L. B. Sokolov, and L. V. Turetskiy}}$ (Vysokomolek. soyed., 6, 346, 1964), where r and r ₀ are the apparent and true copolycondensation constants, Δn is the difference in the number of repeating numbers in	
Card 1/2 UDC: 541.64	2

L 27326-66

ACC NR. AP6008986

the reacting molecules A and B, and β is Traube's coefficient. The results of the test are presented graphically. It was found that 2π 1/r was a linear function of Δn , and that the values of θ for the CH_2 group for the homologous series of aliphatic compounds (as derived from the slope of the straight line) are in good agreement with published values, derived from surface tension measurements. It is concluded that adsorption processes play a dominant role during heterophase copolycondensation. Orig. art. has: 1 table and 1 graph.

SUB CODE: 11/ SUBM DATE: O5Jan65/ ORIG REF: 009/ OTH REF: 001

Card 2/2

 $L 10i_120-67$ EWT(m)/EWP(j) IJP(c) RM

ACC NR: AP6029917 (A)

SOURCE CODE: UR/0413/66/000/015/0088/0088

AUTHORS: Savinov, V. M.; Sokolov, L. B.; Lebedev, A. I.

2/

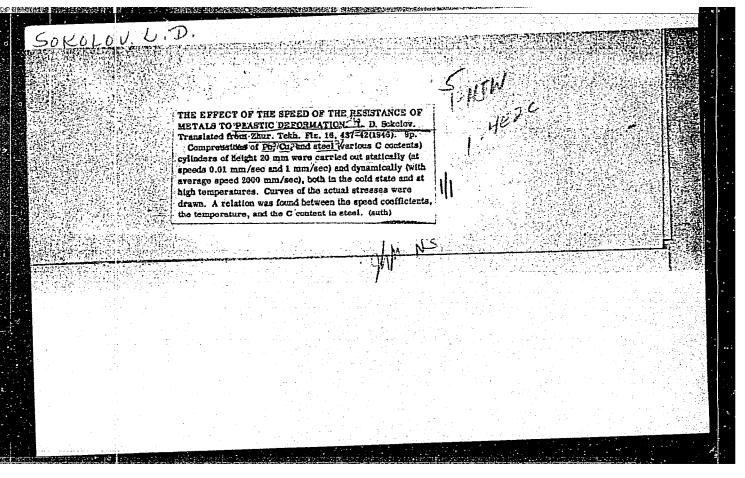
ORG: none

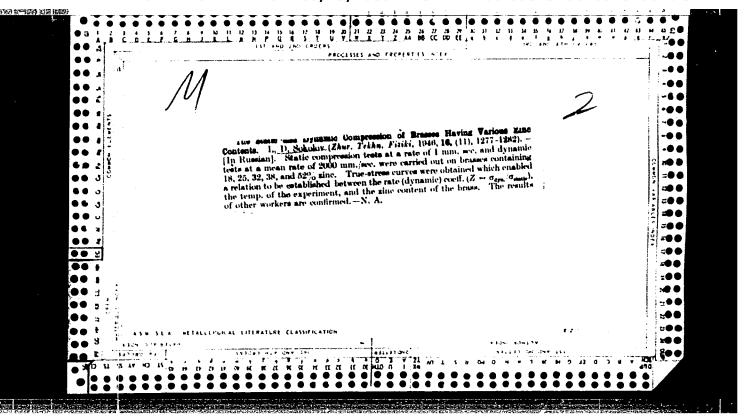
TITLE: A method for obtaining polyamides. Class 39, No. 184441 /announced by Vladimir Scientific Research Institute of Synthetic Resins (Vladimirskiy nauchnoiseledovatel'skiy institut sinteticheskikh smol)/

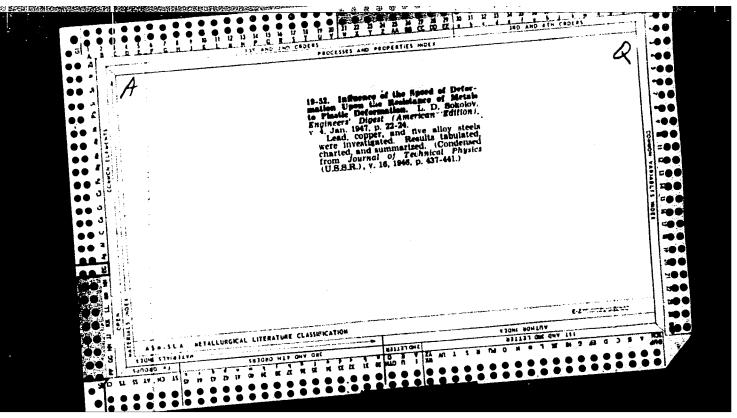
SOURCE: Izobret prom obraz tov zn, no. 15, 1966, 88

TOPIC TAGS: polyamide, polycondensation, emulsion

ABSTRACT: This Author Certificate presents a method for obtaining polyamides by polycondensation of dichlorankydrides of acids and diamines in a solution or emulsion. To complete the technological process, one of the monomers is taken in excess and is gradually introduced into the reactive zone.


SUD CCDE: 07 / SUBM DATE: 24Apr64

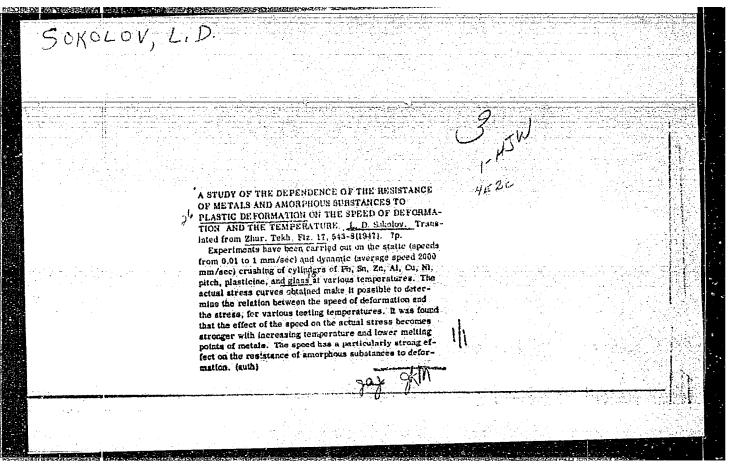

Card 1/1 6/10

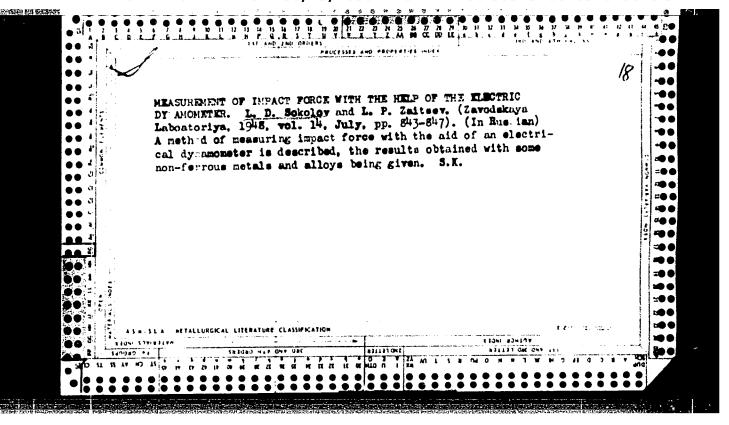

UDC: 678.675

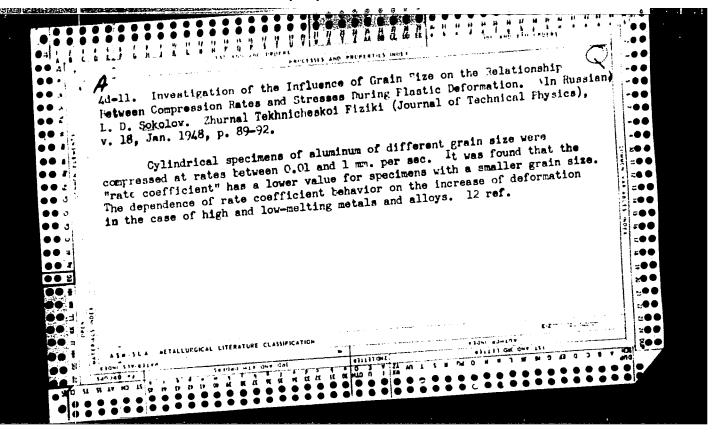
Sokolov, L. D.

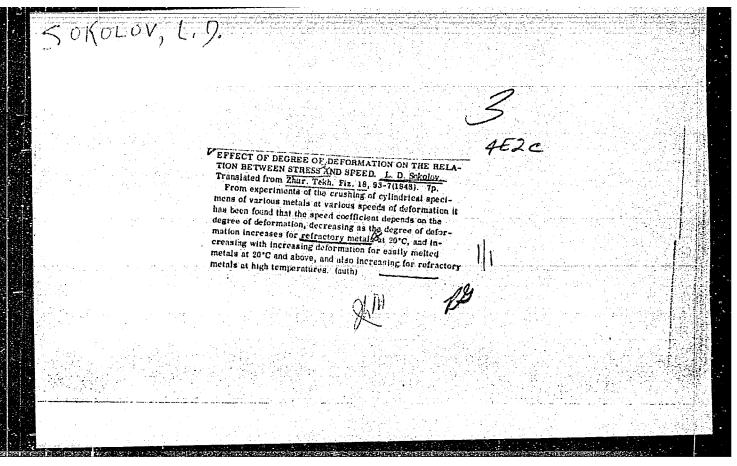
"On the Problem of Nonuniformity of Deformation in Rolling", Stal', 1946, Nr 6, p 375.

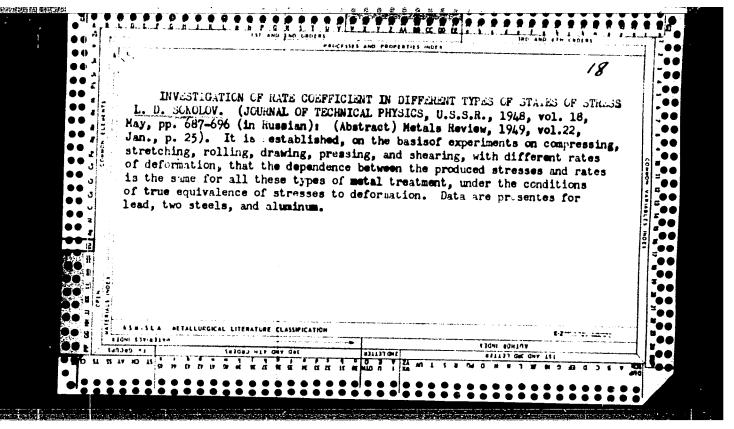
YUDOVICH, S.Z., inzhener; SOKOLOV, L.D., detsent, kandidat tekhnicheskikh nauk.

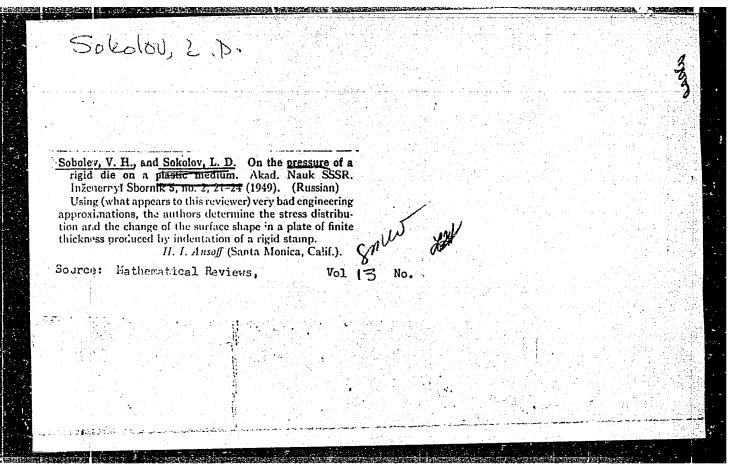

Cerrelation between the strongth of steel and its plastic deformation rate. Stal' 7 ne.2:127-130 '47. (MLRA 9:1)

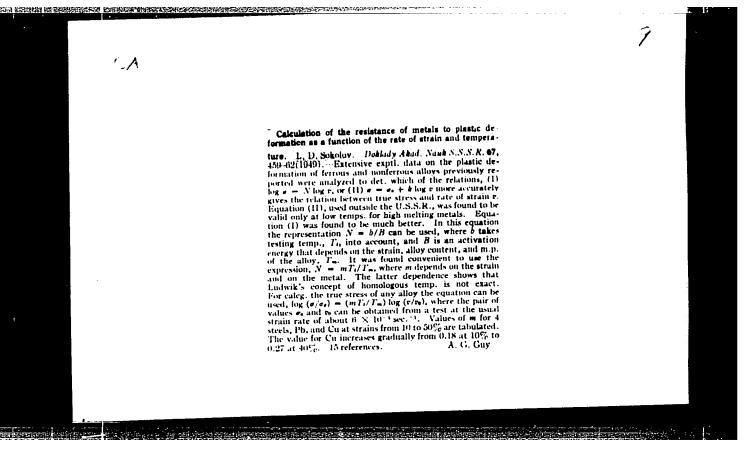

1.Kuznetskiy kembinat i Sibirskiy metallurgicheskiy institut.
(Relling (Metalwerk)) (Steel--Testing) (Deformations (Mechanics))

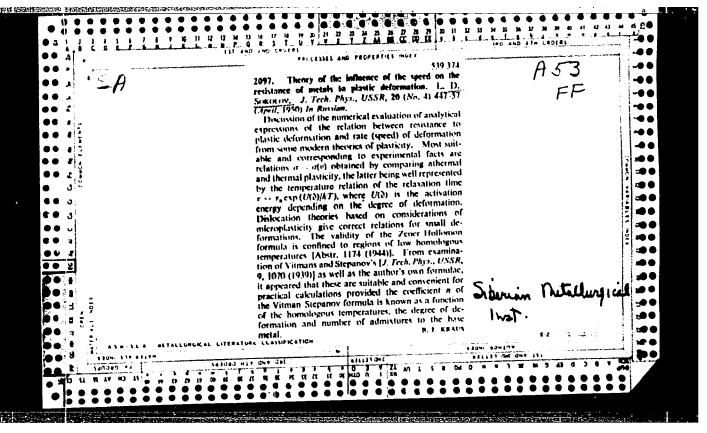

SCHOLOV, L.D., dotsent.

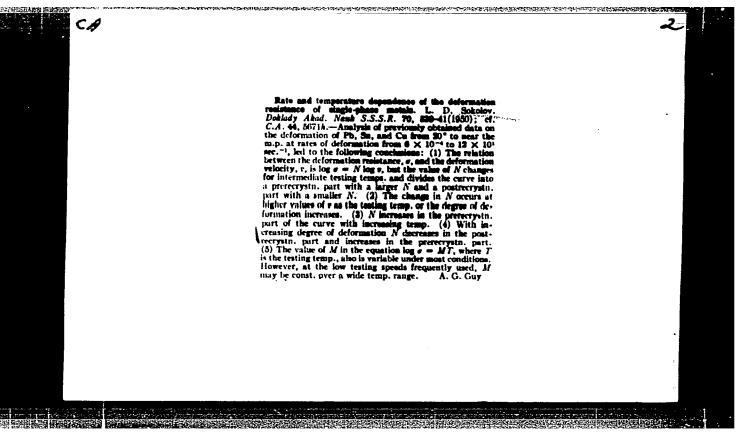

Filling the flanges of shaped grooves of blooming passes.
Stal' 7 no.3:271-273 '47.


1.Sibirskiy metallurgicheskiy institut.
(Rolls (Iron mills)









USSR/Physics - Elasticity (Triterion Governing the Stressed State of a Diagram of Mechanical Deformability," L. D. Sokolov, Siberian Metallurgical Inst imeni Sergo Ordzhonikidze (TAN SSSR" Vol 87, No 6, pp 905-908 Discusses practical applications of subject diagram representing velocity of deformation (up to 1/100 sec-1) versus ratio p/s (p is resistante to deformation, and s is true normal stress). Poses the following sample problem: Meterial is zinc, velocity of deformation is 1 mm/sec, deformation scheme is 10 mm, problem: problem: Meterial is 20 cm, initial height is 10 mm, degree of deformation is 50% (true deformation 2). The problem is to determine whether the metal can endure a limiting deformation of 50% without collapse. Using the diagram the author finds an indeterminate picture relative to the possibility of obtaining the given deformation without collapse. Presented by Acad A. I. Nekrasov 27 Oct 52.	SOKOLOV, L. D.	massaniante eta esta primita esta esta esta esta esta esta esta es	PA 240T92
		clinching, coeff of friction is mu = diam of cylinder is 20 mm, initial han, degree of deformation is 50% (true The problem is to determine whether indure a limiting deformation of 50% type. Using the diagram the author fiverminate picture relative to the possining the given deformation without conted by Acad A. I. Nekrasov 27 Oct 52	USSR/Physics - Elasticity "Criterion Governing the Stressed State of a of Mechanical Deformability," L. D. Sokolov, Metallurgical Inst imeni Sergo Ordzhonikidze "DAN SSSR" Vol 87, No 6, pp 905-908 Discusses practical applications of subject d representing velocity of deformation (up to 1 sec-1) versus ratio p/s (p is resistance to d tion, and s is true normal stress). Poses th lowing sample problem: Material is zinc, velof deformation is 1 mm/sec, deformation schem

SOV/137-58-10-20859

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 10, p 73 (USSR)

Veksin, I.N., Grebenik, V.M., Sokolov, L.D., Shirokov, V.N. AUTHORS:

An Investigation of the Bearing Capacity of a Nr 425 Coldrolling Sheet Mill (Issledovaniye nesushchey sposobnosti listo-TITLE.

vogo stana 425 kholodnov prokatki)

Izv. vyssh. uchebn. zavedeniy. Chernaya metallurgiya, PERIODICAL:

1958, Nr l, pp 160-178

The methods and results of measurements of rolling ABSTRACT:

forces, stresses in the housings, and torque moments of the electric motor in cold rolling on a 425 sheet mill. The major measurements were taken on 2 stands. The electrical characteristics were taken simultaneously at 3 stands and the coiler. Measurement of the forces of rolling steel-strip grades 2, 10 SP, 85, 65, E3A, 50, U7A, U10A, 08PS, and 08KP in the

cold and hot conditions is made by hydraulic capsules with wire strain gages. The hydraulic capsules are placed only under the left screwdowns (S). Measurement of stresses in the housings is made by wire resistance strain gages at 9 points which are

shown by analysis to take the maximum stresses. In Card 1/2

SOV/137-58-10-20859

An Investigation of the Bearing Capacity (cont.)

investigating the electric drives, measurement was made of armature current, field current, and the voltage on the armature of the rolling-mill motors, coilers, and screwdowns. The S stresses do not exceed 80 t, and the stresses in the housings do not exceed the permissible level. The mean stressing of rolling-mill motors in terms of current, moment, and power is 30-50%.

- 1. Rolling mills--Performance 2. Rolling mills--Electrical properties M.Z.
- 3. Rolling mills-Test methods

Ca.rd 2/2

Some problems connected with the mechanical equipment of metallurgical plants. Izv. vys. ucheb. zav.; chern. met. no.3:145-153 Mr '58.

1.Sibirskiy metallurgicheskiy institut.
(Metallurgical plants--Equipment and supplies)

SOKOLOV, L.D., doktor tekhn. nauk, prof.; GREBENIK, V.M., kand. tekhn. nauk, dots.

Determining moments in straightening the material being rolled considering the metal temperature, the degree and speed of deformation, Izv. vys. ucheb. zav.; chern. met. no.4:171-180 Ap 158. (MIRA 11:6)

1. Sibirskiy metallurgicheskiy institut.
(Rolling (Metalwork))

SOKOLOV, L.D., doktor tekhn.nauk, prof.

Determining specific pressures for rolling in grooves. Izv. vys.ucheb.zav.; chern.met. no.6:109-116 Je 58. (MIRA 12:8)

1. Sibirskiy metallurgicheskiy institut. Rekomendovano kafedroy mekhanicheskogo oborudovaniya metallurgicheskikh zavodov Sibirskogo metallurgicheskogo instituta.

(Rolling (Metalwork))

BAKLUSHIN, I.L., inzh.; VEKSIN, I.N., inzh.; GREBENIK, V.M., kand.tekhn.nauk, dotsent; LYULENKOV, V.I., inzh.; SARANTSEV, V.P., inzh.; SOKOLOV, L.D., doktor tekhn.nauk, prof.; SHIROKOV, V.N., prof.

Equipment for use with resistance wire transducers. Izv.vys. ucheb.zav.; chern.met. no.6:149-156 Je '58. (MIRA 12:8)

1. Sibirskiy metallurgicheskiy institut. Rekomendovano kafedroy mekhanicheskogo oborudovaniya metallurgicheskikh zavodov Sibirskogo metallurgicheskogo instituta.

.

(Metallurgical plants-Equipment and supplies)
(Machinery-Testing) (Transducers)

SOKOLOV, L.D., prof., doktor tekhn.nauk; SHIROKOV, V.N., prof.; GKKBENIK, V.M., dots., kand.tekhn.nauk; BAKIJISHN, I.L., insh.; VEKSIN, I.N., insh.; IKHENEV, Yu.N., insh.; SABANTSEV, V.P., insh.

Investigation of rolling mill stands. Izv.v.ys.ucheb.zav.; chern. met. no.8:135-140 Ag '58. (MIRA 11:11)

1. Sibirskiy metallurgicheskiy institut. (Rolling mills) (Strains and stresses)

SOKOLOV, L.D., doktor tekhn. nauk, prof.

Data on metallurgical progress gathered at the 1958 Brussels Fair. Izv. vys. ucheb. zav.; chern. met. no.12:109-114 D '58.

(MIRA 12:3)

1. Sibirskiy metallurgicheskiy institut.
(Metallurgy)

18(3) AUTHORS:

SOV/163-59-1-15/50 Grebenik, V. M., Dashevskiy, Ya. V.,

Sokolov, L. D., Sharapov, V. A.

TITLE:

Mechanization of the Charging of Furnaces for Iron Alloys

(Mekhanizatsiya zagruzki ferrosplavnykh pechey)

PERIODICAL:

Nauchnyye doklady vysshey shkoly. Metallurgiya, 1959, Nr 1,

pp 68-72 (USSR)

ABSTRACT:

In the Sibirskiy metallurgicheskiy institut (Siberian of Metallurgy) a machine has been developed by the authors (Ref 1) with a rotating tube for charging furnaces for iron alloys. This is a short description of this machine. The operative part of the machine is the rotating metal tube with a diameter of 350 mm and a length of 4.5 m. The speed of this tube is 35-45 revs/min. The tube is mounted on a special truck which can travel on a platform. In figure 1 the three characteristic positions of the tube during charging are shown: 1) at an angle with the electrode. 2) Between the electrodes and 3) Pointing into the same direction as the electrode. The machine is equipped with five electric motors which provide the power for the following motions of the machine: rotation of the tube around its longitudinal axis, inclination (tilting) of the tube through an angle of 15-20°,

Card 1/3

Mechanization of the Charging of Furnaces for Iron Alloys

SOV/163-59-1-15/50

forward and backward movement of the tube for charging and withdrawing the charger, (if the machine runs on rails,) the rotation of the tube around a vertical axis and the traveling on the platform. The capacity of the machine can reach 35 t/hour in consideration of the tube inclination and the speed. The first test model of such a machine was constructed according to a simplified design due to the proposals of V. F. Volkov and I. Ya. Pelenovskiy, workers of the Zaporozhskiy ferrosplavnyy zavod (Zaporozh ye Iron Alloy Works). It was tested with one of the works furnaces. The results of the test runs proved to be satisfactory and demonstrated that this machine is capable of handling the charging of furnaces in accordance with technological requirements. A short summary of the experience collected in the operation of two model chargers is presented. There are 3 figures and 2 Soviet references.

ASSOCIATION:

Sibirskiy metallurgicheskiy institut (Sibirskiy Institute of Metallurgy)

Card 2/3

RAKLUSHIN, I.L., inzh.; VEKSIN, I.N., inzh.; GREHENIK, V.M., dotsent, kand. tekhn. nauk; LYULENKOV, V.I., inzh.; SARANTSEVM, V.P.; SOKOLOV, L.D., prof., doktor tekhn. nauk; SHIROKOV, V.N., prof.

Hydraulic calibration of 1500-ton power presses. Izv. vys. ucheb. zav.; chern. met. 2 no.4:113-121 Ap '59. (MIRA 12:8)

l.Sibirskiy metallurgicheskiy institut. Kekomendovano kafedroy mekhanicheskogo oborudovaniya metallurgicheskikh zavodov Sibirskogo metallurgicheskogo instituta.

(Hydraulic presses) (Calibration)

SOKOLOV, L.D., prof., doktor tekhn. nauk

Notes on metallurgy in China. Izv. vys. ucheb. zav.; chern. met.
2 no.4:151-155 Ap '59. (MIRA 12:8)

1.Sibirskiy metallurgicheskiy institut.
(China--Metallurgy)

,一个人不是一个人的人,我们也不是一个人的人,我们就是一个人的人的人,我们也不是一个人的人,我们也没有一个人的人,我们也没有一个人的人,我们就是我们的人的人,

BAKLUSHIN, I.L., inzh.; VEKSIN, I.N., inzh.; GREBENIK, V.M., dota., kand.tekhn.nauk; LYULENKOV, V.I., inzh.; SABANTSEV, V.P., inzh.; SOKOLOV, L.D., prof., doktor tekhn.nauk; SHIROKOV, V.N., prof.

Investigating the 740 cold rolling mill for thin sheets. Izv. vys.ucheb.zav.; chern.met. 2 no.8:143-148 Ag '59. (MIRA 13:4)

1. Sibirskiy metallurgicheskiy institut. Rekomendovano kafedroy mekhanicheskogo oborudovaniya metallurchiskikh zavodov Sibirskogo metallurgicheskogo instituta.

(Rolling mills)

SOKOLOV, L.D.; CHELYSHEV, N.A.

Investigating the operating conditions of 1100 bloowing mill shears. Izv.vys.ucheb.zav.; chern.met. no.4:173-180 '60. (MIRA 13:4)

1. Sibirskiy metallurgicheskiy institut. (Rolling mills-Equipment and supplies) (Shears(Machine tools))

SOKOLOV, L.D.; CHELYSHEV, N.A.

Investigating a straightening machine of a rail-rolling mill.

Izv.vys.ucheb.zav.; charn.met. no.6:196-198 '60.

(MIRA 13:7)

1. Sibirskiy metallurgicheskiy institut.

(Rolling mills—Aquipment and supplies)

ALEYNIKOV, A. I.; BAKIUSHIN, I. L.; VEKSIN, I. N.; GREBENIK, V. M.; LYULENKOV, V. I.; SABANTSEV, V. P.; SEREGIN, S. A.; SCKOLOV, L. D.; SHIROKOV, V. N.

Investigating the mechanism of the rotation process of ferroalloy furnace baths. Izv. vys. ucheb. zav.; chern. met. no.8:181-187 '60. (MIRA 13:9)

1. Sibirkiy metallurgicheskiy institut.
(Rotary hearth furnaces) (Iron alloys)

SE SENSE EN BOSE SENSE EL TERRETER SENSE EN SENSE EN EN SENSE EN S

SOKOLOV, L.D.; GRERENIK, V.H.

Determination of forces in blast furnace guns. Izv. vys. ucheb. zav.; chern. met. no.12:162-165 '60. (MIRA 14:1)

1. Sibirskiy metallurgicheskiy institut. (Blast furnaces—Equipment and supplies)

AL'KOV, V.G.; SOKOLOV, L.D. Determination of forces for the branding of hot-rolled products. Determination of forces for the branching of Izv. vys. ucheb. zav.; chern. met. no.12:183-185 '60. (MIRA 14:1)

1. Sibirskiy metallurgicheskiy institut. (Rolling (Metalwork)) (Man (Marking devices)

"APPROVED FOR RELEASE: 08/25/2000

CIA-RDP86-00513R001652010016-9

S/148/61/000/002/007/011 A161/A133

AUTHORS:

Sobolev, V. Kh., Sokolov, L. D.

TITLE:

Mathematical analysis of the stressed state during tension

PERIODICAL:

Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, no. 2,

1961, 93 - 95

The author points out that neither the ultimate strength nor the true TKXT: stress used lately for an analysis of plastic deformation processes are suitable indices, for the ultimate strength is only true within the uniform elongation range of the specimens, and the true stress is difficult to determine in experiments. A different method is suggested instead: to use the Körber - Melendorf rule, (Ref. 3: F. Körber. Mitt. Kais. Wilh. Inst. f. Eisenforsch., 3, I. 1922) for the approximate calculation of the true stress from the moment of the neck formation to the rupture of the tension test specimen. However, to obtain more accurate results, it is necessary to analyze the volumetric stressed state in the neck. The forces are presented schematically for the purpose. Two stresses are introduced:

a conditional

Card 1/3

s/148/61/000/002/007/011

Mathematical analysis of the stressed state during tension A161/A133

and an effective

$$\dot{\mathbf{q}} = \frac{\mathbf{Q}}{\pi y^2} \tag{2}$$

where r - the bar radius before elongation; y - the ordinate of the neck; Q - the tension force. The real stress is denoted with p_t . It is obvious that $p < q < p_t$, (3)

and, denoting with a the neck radius in the thinnest spot, the effective stress will be $q_0 = \frac{Q}{\pi R}$ (4)

The system is analyzed and the final formula arrived at is

$$q_{o} = \frac{p_{t}}{1 + \frac{d}{8\rho}}$$

where ρ is the neck radius of curvature in the thinnest spot. The same formula had been obtained by Siebel (Ref. 4: E. Siebel. Berichte der Fachausschüsse des Vereins deutscher Eisenhützenleute. Werkstoffausschussbericht, no. 71, 1925). It is obvious that q_0 , d and ρ values determined by test have to be known to find the true stress. There are 2 figures and 4 feferences: 2 Soviet-bloc and 2 non-Card 2/3

5/148/61/000/002/007/011

Mathematical analysis of the stressed state during tension A161/A133

Soviet-bloc.

ASSOCIATION: Sibirskiy metallurgicheskiy institut (Siberian Metallurgical Institute)

SUBMITTED: February 19, 1960

Card 3/3

SOKOLOV, L.D.; CHELYSHEV, N.A.; ZHDANOV, I.A.; KAZANTSEV, A.A.

Investigating the wear resistance of bearing textolite in conditions of work on rolling mills. Izv. vys. ucheb. zav.; chern. met. no.2: 172-177 '61. (MIRA 14:11)

 Sibirskiy metallurgicheskiy institut. (Bearings (Machinery)) (Rolling mills)

OFLOV, D.M.; ZAYTSHV, L.P. [deceased]; LYULENKOV, I.S.; LYULENKOV, V.I. SOKOLOV, L.D.

Efficient selection of counterweights for tower type car dumpers. Izv.vys.ucheb.zav.; chern.met. no.4:177-183 '61. (MTRA 14:4)

A BUNKARANTA BARKATAKARANTAKARANTAKARANTAKARANTAKARA

S/148/61/000/006/013/013 E193/E480

AUTHORS: Sokolov, L.D., Shirokov, V.N., Grebenik, V.M.,

Veksin, I.N., Baklushin, I.L., Lyulenkov, V.I.,

Sabantsev, V.P.

TITLE: Experimental and analytical determination of forces in

cold rolling

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy, Chernaya

metallurgiya, 1961, No.6, pp.191-193

TEXT: In the course of an earlier investigation carried out by the present authors (Ref.1: Izvestiya vysshikh uchebnykh zavedeniy, Chernaya metallurgiya, 1959, 8), large discrepancies were found between the laboratory results and the operational data on forces acting on the rolls during cold rolling. It was revealed, however, in the course of further tests that in many cases the roll chocks had become worn (in some places to a depth of 0.4 mm) and it was postulated that this factor may have affected the load cell readings. In an attempt to find a way of eliminating this source of error, both during the calibration of the load cells and later in use, the effect of lead washere approximately 2 mm thick, placed under the dynamometers, was investigated. Fig.1 shows the Card 1/6

S/148/61/000/006/013/013 E193/E480

Experimental and analytical ...

experimental conditions: a - an annular washer supporting the 6 - a solid washer under the load cell along its periphery; **B** - no washer; **?** - a solid central part of the load cell; washer of the size equal to that of the load cell. On the righthand side of Fig.1, the calibrating force is plotted against the load cell readings; most consistent results were obtained when a large solid washer was used (graph 2). The latter method was employed in roll force measurements and the results compared with roll force values, calculated according to A.I.Tselikov and A, A. Korolev (Ref. 2: Prokatnyye stany, Metallurgizdat, 1958). esults are tabulated. It will be seen that the difference reached occasionally 30 or even 37%, the experimental values being always lower than the calculated figures. One possible explanation of this effect is provided by the fact that the temperature of cold rolled metal increases. Although the strength of the carbon steels and constructional alloy steels increases on heating between 20 and 400°C, this increase takes place during cold rolling at certain rolling speeds only. According to M.I.Manjoine (Ref.5: Journal of the Iron and Steel, v.150, p.3, VI, 1947, 380), Card 2/6

Experimental and analytical ... 5/148/61/000/006/013/013 E193/E480

the "ageing peak" is shifted towards higher temperatures when the steel is rolled at high rolling speeds, so that under these conditions the strength of steel between 0 and 400°C decreases with increasing temperature. Consequently, if the temperature attained by the metal during cold rolling at high speeds is 300°C, decreases, which explains the discrepancy at heavy drafts) 2 figures, 1 table and 5 references: 4 Soviet and 1 non-Soviet. Thereference to an English language publication reads as follows: M.I.Manjoine, Journal of the Iron and Steel, v.150, p.3, VI, 1947,

ASSOCIATION: Sibirskiy metallurgicheskiy institut

CHANGE TO THE THE THE TAX TO THE

(Siberian Metallurgical Institute)

SUBMITTED: March 30, 1960

Card 3/6

SOKOLOV, L.D.; SHIROKOV, V.N.; GREBENIK, V.M.; VEKSIN, I.N.; BAKLUSHIN,
I.T.; LYULENKOV, V.I.; SABANTSEV, V.P.; KAZANTSEV, A.A.

Investigating stresses in models of steel pouring ladles. Izv.
vys. ucheb. zav.; chern. met. 4 no.10:147-156 '61. (MIRA 14:11)

1. Sibirskiy metallurgicheskiy institut.
(Smelting furnaces--Equipment and supplies)
(Thermal stresses--Models)

impact strengt' calculations of metallurgical equipment parts. 12v.
yys. usheb. zav.; chern. met. '+ mo.12:173-178 '61. (M.RA 15:1)

1. Sibirskiy metallurgicheskiy institut.
(Rolling mills)

OKOLOV, L.D.

Deformation aging. Fiz.met.i metalloved. 14 no.6:904-909 D '62.

(MIRA 16:2)

1. Gor'kovskiy politekhnicheskiy institut im. A.A.Zhdanova.

(Metals-Hardening)

AM4016866

BOOK EXPLOITATION

S

Sokolov, Lev Dmitriyevich

Resistance of metals to plastic deformation (Soprotivleniye metallov plastiches-koy deformatsii) Moscow, Metallurgizdat, 1963. 284 p. illus., biblio. Errata slip inserted. 3650 copies printed. Publishing house editor: V. M. Gorobin-chenko; Technical editor: P. G. Islent'yeva; Cover artist: N. A. Ignat'yeva.

TOPIC TAGS: plastic strain, strain aging, yield point, plastic flow, strain hardening, weakening, carbon steels, alloy steels, low temperature strain resistance, dislocation theory, rate of strain, strain temperature, strain diagram

PURPCEE AND COVERACE: This book is intended for scientific personnel and engineers and technicians at institutes, design organizations, and plants in the metallurgical and machine-building industries; it also may be useful to students at corresponding vuzes. The temperature and rate dependences of the strain resistance of metals are analyzed on the basis of dislocation concepts. The mechanisms of strain aging of metals are presented, as well as experimental data for many technically pure metals and alloys. The author expresses his gratitude

Card 1/5

9939107WV

to the Chief of the Bibliography Section of the Siberian Metallurgical Institute, B. V. Yagunov, and to Engineers O. M. Goncharov, D. F. Moldavskiy, M. V. Shamov, V. G. Kachalkin, O. A. Kolotov, L. A. Barkov, and V. A. Skudnov.

TABLE OF CONTENTS:

Foreword --5
Introduction --7
Ch. I. General aspects of the method of setting up and analyzing experiments -9
Literature -- 19
Ch. II. Influence of temperature on the resistance of metals to plastic strain
--2

Technically pure metals - - 21
 Disturbance of the monotonic temperature dependence of strain resistance and the phenomenon of flow - - 31
 Comparison of temperature dependences of strain resistances and strain-hardening coefficients of metals with various lattice types - - 42
 Steels and alloys - - 54

Card 2/5

dance de la company de la comp

AM4016866

General form of the temperature dependence of the strain resistance of carbon and alloy steels - - 54 Temperature dependence of the strain resistance of steels at low temperatures -58 Phenomenon of flow of steels - - 62 Temperature dependence of the strain resistance of alloys - - 67 3. The theory of the temperature dependence of the strain resistance of metals -General conclusions - - 71 Information from dislocation theory - - 73 The dislocation nature of certain phenomena connected with the temperature dependence of strain resistance - - 84 Literature - - 103 Ch. III. Influence of rate on the resistance of metals to plastic strain - - 108 1. Development of the method of investigating the rate factor and experimental data - - 108 · Influence of rate at room temperature - - 108 Influence of rate at different temperatures - - 123 Generalization of experimental data - - 142 2. Defining more accurately the rate dependence of the strain resistance of steals,

Card 3/5

AMA016866

metals, and alloys - - 157

Systematic investigation of the rate dependence of the strain resistance of metals and steels - - 157

的现在,这种种种种,我们是是我们的人们的,我们也是不是不是,我们们也是是不是,我们们也是我们的人们的人,我们就是我们的人,我们们是我们的人们的人,我们们们们的人

Recent studies connected with investigation of the rate dependence of the strain resistance of metals --174

Nonmonotonic-ness of the rate dependence of strain resistance in a wide range of rates - - 191

3. Analysis of strain diagrams - - 200

Influence of inertia phenomena - - 200

The dislocation nature of the rate effect for the yield point - - 212

The role of strain-hardening and weakening phenomena and of grain size in the rate effect at different portions of strain diagrams - - 220

Some theories of flow of metals --235

4. The theory of the rate dependence of the strain resistance of metals -247 General conclusions -247

Some theories of the rate dependence of strain resistance - 250 Literature - 278

Card 4/5

AM4015866

SUB CODE: AP, ML SUBMITTED: 13May63 NR REF SOV: 125

OTHER: 319 DATE ACQ: 10Dec63

Card 5/5

SOKOLOV, L.D. (Gor'kiy)

Temperature-rate dependence of the deformation resistance of metals.

Izv. AN SSSR. Otd. tekh. nauk. Met. i gor. delo no.3:147-153 My-Je '63.

(Deformations (Mechanics))

(MERA 16:7)

(Metals, Effect of temperature on)

SOKOLOV, L.D.

Investigating the temperature-time dependence of the resistance to deformation in metals and steel. Izv. vys. ucheb. zav.; chern. met. 6 no.8:93-101 '63. (MIRA 16:11)

Gor'kovskiy politekhnicheskiy institut.

SOKOLOV, L.D.

Resistance to deformation of carbon steels. Izv. vys. ucheb. zav.; chern. met. 6 no.10:62-68 '63. (MIRA 16:12)

1. Gor'kovskiy politekhnicheskiy institut.

s/126/63/015/001/015/029 E193/E383

Sokolov, L.D.

The role of grain size and hardening and softening AUTHOR: TITLE:

processes on the strain-rate effect at various points

of the stress/strain diagram

Fizika metallov i metallovedeniye, v. 15, no. 1, PERIODICAL:

A critical analysis of a large number of published 1963, 109 - 112 experimental data is presented with the view of elucidating the nature of the effect of preliminary treatment, grain size, TEXT: temperature and strain rate on the shape of the stress/strain diagram of metals - both those that do and those that do not have a clearly defined yield point. The author is concerned mainly with the maximum present on the stress/strain diagrams of metals such as Pb, Cu, Al, etc. He concludes that - in analogy to lowcarbon steels ar some other metals with BCC lattice - the effect of strain rate of the shape of the strain/stress diagram in the low (10-20% strain range) is associated either with the barrier effect or with the complexity effect. The position of the yield Card 1/2

SOKOLOV, L.D., doktor tekhn. nouk, prof.

Effect of the chemical composition of steels on their strength characteristics at various temperatures. Stal' 23 no.10:930-933 0 '63. (MIRA 16:11)

1. Gor'kovskiy politekhnicheskiy institut.

ACCESSION NR: AP4017760

\$/0148/64/000/002/0080/0085

AUTHOR: Sokolov, L.D.

TITLE: Deformation Resistance of Pearlitic Steel

SOURCE: IVUZ. Chernaya metallurgiya, no.2, 1964, 80-85

TOPIC TAGS: deformation resistance, pearlitic steel, nickel, carbon silicon, nickel, hot machining, work hardening, uniaxial deformation, temperature time diagram, steel

ABSTRACT: The preser paper is a continuation of two previous investigations on the deformation resistance observed in 100 types of pearlitic steel. Annealed cylindrical specimens 10mm diameter and 20mm high were tested. Considering the temperature-time relationship of actual stress, it is concluded that in the region of cold working, the ordinary uniform decrease of stress at v = 5.10-4 sec-1 is distorted by rising temperatures because of the occurrence of strain aging. Carbon and nickel were found to exert an appreciable influence on decreasing the maximum of strain aging. A uniform gradual decrease in

Card 1/2

ACCESSION NR: AP4017760

the deformation resistance was observed beyond the region of strain aging in all specimens as temperatures were increased. Temperature—time diagrams of actual stress reveal recrystallization inflections. The temperature and the deformation rate at the time of their appearance were negligibly affected by the composition of the specimens. The deformation rate remains almost unchanged, with a content of alloying elements below 2 to 3 percent. Si and Al are an exception as they tend to reduce the deformation rate in comparison with carbon steel. In the region of hot machining all pearlitic steel specimens submitted to uniaxial deformation displayed the same temperature—time dependence. "The collaboration of N.G. Ivashin, I.S. Turchenkov, L.P. Zaytsev (deceased), O.N. Goncharov, and Sung I-K'ang in carrying out tests and anlyses is acknowledged." Orig. art. has 2 figures and 1 table.

ASSOCIATION: Gor'kovskiy politekhnicheskiy institut (Gor'ky Poly-

technic Institute)

SUBMITTED: 19Sep63

DATE ACQ: 12Mar64

ENCL: 00

SUB CODE: ML

NR REF SOV: 003

OTHER: 000

Card 2/2

BAKLUSHIN, I.L.; VEKSIN, I.N.; LYULENKOV, V.I.; SABANTSEV, V.P.; SOBOLEV, A.P.; SOKOLOV, L.D.; SHIROKOV, V.N.

Analyzing the reserve strength of the 1100 blooming mill stand in the Kuznetsk Metallurgical Combine. Izv. vys. ucheb. zav.; chern. met. 7 no.2:205-212 '64. (MIRA 17:3)

1. Sibirskiy metallurgicheskiy institut.